Random Graphs
 Exercise Sheet 1

Question 1. Give an example of a set of events $\left\{A_{i}: i \in I\right\}$ which are pairwise independent, but not mutually independent.

Give an example of a collection of random variables $\left\{X_{i}: i \in I\right\}$ which are pairwise independent, but not mutually independent.

Give an example of two random variables X and Y such that $\mathbb{E}(X Y) \neq \mathbb{E}(X) \mathbb{E}(Y)$.

Question 2. Calculate the following probabilities:

- $\mathbb{P}(G(4,1 / 2)$ has 2 edges $)$;
- $\mathbb{P}(G(4,1 / 2)$ has 6 edges $)$;
- $\mathbb{P}(G(4,1 / 2)$ is connected $)$.

Question 3. Let $\left(G(1), \ldots, G\left(\binom{n}{2}\right)\right)$ be the sequence of random variables given by the random graph process in the lecture. Show that $G(m) \sim G_{n, m}$ for each m.

Question 4. Show that with high probability $\mathbb{P}(G(n, p)$ has diameter $\leq 2)$, for constant p.

Question 5. Let G be a graph. Show that G contains an independent set of size at least

$$
\sum_{x \in V} \frac{1}{d(v)+1}
$$

Question 6. Show directly, that is without using any relation between $G_{n, m}$ and $G_{n, p}$, that every monotone graph property has a threshold in $G_{n, m}$.
(Hint: It may be useful to relate the random variable $G_{n, k m}$ to the random variable given by the union of k independent copies of $\left.G_{n, m}\right)$.

